Metode backward Chaining dan Forward Chaining
Merupakan kebalikan dari forward chaining dimana mulai dengan sebuah hipotesa (sebuah objek) dan meminta informasi untuk meyakinkan atau mengabaikan. Backward chaining inference engine sering disebut: ‘Object-Driven/Goal-Driven‘.
Catatan: inference engine adalah bagian dari sistem pakar yang mencoba menggunakan informasi yang diberikan untuk menemukan objek yang sesuai. Inference engine mempunayi 2 kategori yaitu deterministic dan probabilistik. Sedangkan dasar untuk membentuk inference engine diantaranya: forward chaining, backward chaining dan rule value (merupakan pendahulu dari forward dan backward chaining).
Backward Chaining: Pencocokan fakta atau pernyataan dimulai dari bagian sebelah kanan (THEN dulu). Dengan
kata lain penalaran dimulai dari hipotesis terlebih dahulu, dan untuk menguji kebenaran
hipotesis tersebut harus dicari fakta-fakta yang ada dalam basis pengetahuan.
Contoh forward dan backward chaining dikutip dari Idhawati Hestiningsih
R1 : IF suku bunga turun THEN harga obligasi naik
R2 : IF suku bunga naik THEN harga obligasi turun
R3 : IF suku bunga tidak berubah THEN harga obligasi tidak berubah
R4 : IF dolar naik THEN suku bunga turun
R5 : IF dolar turun THEN suku bunga naik
R6 : IF harga obligasi turun THEN beli obligasi
Apabila diketahui bahwa dolar turun, maka untuk memutuskan apakah akan membeli obligasi atau tidak dapat ditunjukkan sebagai berikut :
Forward Chaining
Dari fakta dolar turun, berdasarkan Rule 5, diperoleh konklusi suku bunga naik. Dari Rule 2 suku bunga naik menyebabkan harga obligasi turun. Dengan Rule 6, jika harga obligasi turun, maka kesimpulan yang diambil adalah membeli obligasi.
Backward Chaining
Dari solusi yaitu membeli obligasi, dengan menggunakan Rule 6 diperoleh anteseden harga obligasi turun. Dari Rule 2 dibuktikan harga obligasi turun bernilai benar jika suku bunga naik bernilai benar . Dari Rule 5 suku bunga naik bernilai memang bernilai benar karena diketahui fakta dolar turun.
0 komentar:
Posting Komentar